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Crossover effects in a discrete deposition model with Kardar-Parisi-Zhang scaling

Anna Chame and F. D. A. Aara˜o Reis
Instituto de Fı´sica, Universidade Federal Fluminense, Avenida Litoraˆnea s/n, 24210-340 Nitero´i Rio de Janeiro, Brazil
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We simulated a growth model in (111) dimensions in which particles are aggregated according to the rules
of ballistic deposition with probabilityp or according to the rules of random deposition with surface relaxation
~Family model! with probability 12p. For anyp.0, this system is in the Kardar-Parisi-Zhang~KPZ! uni-
versality class, but it presents a slow crossover from the Edwards-Wilkinson class~EW! for smallp. From the
scaling of the growth velocity, the parameterp is connected to the coefficientl of the nonlinear term of the
KPZ equation, givingl;pg, with g52.160.2. Our numerical results confirm the interface width scaling in
the growth regime asW;lbtb and the scaling of the saturation time ast;l21Lz, with the expected expo-
nentsb51/3 andz53/2, and strong corrections to scaling for smalll. This picture is consistent with a
crossover time from EW to KPZ growth in the formtc;l24;p28, in agreement with scaling theories and
renormalization group analysis. Some consequences of the slow crossover in this problem are discussed and
may help investigations of more complex models.

DOI: 10.1103/PhysRevE.66.051104 PACS number~s!: 05.40.2a, 05.50.1q
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I. INTRODUCTION

Surface growth processes and deposition of thin films
of great interest due to potential technological applicatio
~such as production of nanostructures for microelectronic
vices, the possibility of growth of designed quantum objec
magnetic storage devices, among others! and due to the fun-
damental role these systems play in nonequilibrium stat
cal physics@1,2#. Several models have been investigated
the last decade, most of them involving one kind of parti
and a simple microscopic aggregation rule. The competi
between different growth mechanisms have received les
tention, but is essential to describe some practical situati
such as growth of materials designed to have specific e
tronic, mechanical or magnetic properties, which involv
deposition of two or more chemical species. In this fram
work, some authors considered growth models with t
kinds of particles and different aggregation rules@3–5#.
Other situations involving competition between two grow
mechanisms have also been considered@6–8#.

These models usually show crossover effects from
dynamics at small timest or short length scalesL to another
dynamics at longt and largeL. One typical example is
Kardar-Parisi-Zhang~KPZ! growth at small nonlinearities
@9#. The Langevin-type equation

]h

]t
5n¹2h1

l

2
~¹h!21h~xW ,t !, ~1!

known as KPZ equation, was proposed as a hydrodyna
description of kinetic surface roughening. Hereh is the
height at the positionxW in a d-dimensional substrate at timet,
n represents a surface tension,l represents the excess velo
ity andh is a Gaussian noise@1,9# with zero mean and vari
ance^h(xW ,t)h(x8W ,t8)&5Ddd(xW2x8W )d(t2t8). When the co-
efficient l of the nonlinear term is small, a crossover
observed from linear growth (l50, known as Edwards
Wilkinson theory—EW! @10# to KPZ behavior.
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In discrete models, the interface width that characteri
the roughness of the interface is defined as

W~L,t !5F K 1

Ld (
i

~hi2h̄!2L G1/2

, ~2!

for deposition in ad-dimensional substrate of lengthL (hi is
the height of columni at timet, the bar inh̄ denotes a spatia
average and the angular brackets denote a configurati
average!. For short times it scales asW;tb and for long
times, in the steady state regime, it saturates atWsat;La.
The dynamical exponentz5a/b characterizes the crossove
from the growth regime to the steady state regime. For s
tems belonging to the EW universality class, we havea0
51/2, b051/4, andz052 in d51 ~in this paper, the sub-
script 0 will refer to exponents of the EW theory!. For sys-
tems in the KPZ class, ind51, we havea51/2, b51/3,
z53/2 @1,9,10#.

Considering the crossover from EW to KPZ scaling
d51, Grossmann, Guo, and Grant~GGG! @11# and Natter-
mann and Tang~NT! @12# ~see also the review by Forrest an
Toral @13#! proposed multiscaling relations that are equiv
lent to

W~L,t !5La f S t

tc
,

L

jc
D , ~3!

in which jc;tc
1/z0 . GGG also proposed that the characteris

time of crossover from EW to KPZ dynamics was

tc;l2f, ~4!

with f.0, since the EW-KPZ crossover disappears forl
50. Through scaling arguments, those authors obtainef
5z0 /(a01z022), which givesf54 in d51. This was
confirmed through one-loop renormalization group calcu
tions by NT. The scaling analysis of the KPZ equation
©2002 The American Physical Society04-1
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A. CHAME AND F. D. A. AARÃO REIS PHYSICAL REVIEW E66, 051104 ~2002!
Amar and Family@14# and the assumption of Family-Vicse
scaling @15# were used to show that, in the nonlinear a
saturation regimes,

W~L,t !;L1/2gS ulu
t

L3/2D , ~5!

in which g is a scaling function and the dependence ofW on
the parametersn andD of Eq. ~1! was omitted. A generalized
scaling relation equivalent to Eq.~3!, which is a more gen-
eral result than Eq.~5!, was also obtained by Derrida an
Mallick in the context of the connection to the on
dimensional asymmetric exclusion model@16#. Amar and
Family @14# have shown that the scaling form~5! also pre-
dicts a crossover exponentf54.

On the other hand, all previous numerical results s
gestedf'3; for instance, GGG obtained this value usi
data collapse methods@11#. Thus, it would be desirable to
confirm numerically the scaling properties predicted for
KPZ system in order to solve this controversy.

The purpose of this work is to study a competitive grow
process with EW to KPZ crossover, involving ballistic dep
sition ~BD! @1,17# and random deposition with surface rela
ation ~Family model! @18# in d51. In this model, incident
particles aggregate to the deposit according to the rule
BD with probabilityp and according to the rules of the Fam
ily model with probability 12p. It is known that the Family
model is in the EW universality class, while BD is in th
KPZ class. This competitive model was introduced by Pe
grini and Jullien@19#, whose main interest was the conne
tion to the roughening transition present in higher dime
sions. Although it is expected that this model is in the KP
class for anyp.0, the crossover ind51 was not studied in
detail in their original work and, forp&0.3, effective expo-
nents very near the EW values were obtained@19#.

Here we will simulate that model in order to analyze t
interface width scaling in the nonlinear regime, the crosso
to the saturation regime and to connect the parameterp and
the coefficientl of the KPZ equation in the correspondin
continuum limit. The amplitudes of typical saturation tim
and of interface width scaling in the growth regime are co
sistent with multiscaling concepts@11,12,14# and refine pre-
vious numerical estimates for related systems. The cross
exponentf54 follows directly from our numerical result
and, together with the observed relationl;p2.1, indicate
that the crossover at smallp is very slow. The analysis of this
apparently simple problem shows that, in order to obt
reliable asymptotic exponents governing various quantit
it is essential to account for corrections to the leading te
in the scaling relations. Thus, this work may also be relev
to the analysis of other systems with slow crossover to K
scaling, whose interest increased after the recent debat
the problem of Fisher waves and their discrete realization
d51 dimensions@20–23#. For that reason, the crossover e
fects identified in our simulations’ data will be discussed
detail.

It is also relevant to point out that a related competit
model was recently studied ind51 andd52 @24#, showing
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evidence of the asymptotic KPZ behavior. However, th
work neither studied the relation between the parameter
the discrete and the continuous~KPZ! model nor the scaling
amplitudes that will be considered here.

The rest of this work is organized as follows. In Sec.
we will define precisely the discrete model and connect it
the KPZ equation using the scaling properties of the grow
velocity. In Secs. III and IV we will present results for th
interface width scaling in the discrete model at the nonlin
growth regime and at the steady state regime, respectivel
Sec. V we summarize our results and present our con
sions.

II. THE DISCRETE MODEL AND ITS CONNECTION
TO THE KPZ THEORY

We considered a model in which particles are aggrega
following the rules of BD with probabilityp or the rules of
random deposition with surface relaxation~Family model!
with probability 12p. In BD @Fig. 1~a!#, the incident par-
ticle follows a straight trajectory perpendicular to the surfa
and sticks upon first contact with a nearest neighbor oc
pied site. It leads to the formation of a porous deposit. In
Family model@Fig. 1~b!#, the particle falls towards the sur
face along the incident column and sticks at the top of t
column if its height is lower than or equal to the heights
the neighboring columns. Otherwise, the particle diffuses
the neighboring column which has the lowest height and
two or more neighbors have the same height, it chooses
of them randomly.

For p50, we have the Family model, which is in the EW
universality class. For anypÞ0, in d51, we expect the BD
process to change the universality class to KPZ in the c
tinuum limit ~see the analysis in Ref.@25# for a related
model!. Then the coefficientl of the nonlinear term vanishe
with p in the form

l;pg, ~6!

with g.0 ~to be estimated below!. For smallp and suffi-
ciently large L, the interface widthW(L,t,p) must scale
analogously to the weak coupling regime of the KPZ theo
@13,19#, in which three regimes were identified: a line
~EW! growth regime at early times (t!tc), a nonlinear
~KPZ! growth regime fortc!t!t, and the saturation regim

FIG. 1. ~a! The aggregation rules of ballistic deposition,
which the sticking position of each incident particle is marked w
a cross.~b! The aggregation rules of the Family model, in which t
relaxation of incident particles to their sticking positions is ind
cated by arrows. The incident particle at the right has equal pr
abilities to stick at any one of the neighboring columns.
4-2
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CROSSOVER EFFECTS IN A DISCRETE DEPOSITION . . . PHYSICAL REVIEW E 66, 051104 ~2002!
for t@t as illustrated in Fig. 2 (t is the characteristic time
for the interface width saturation!.

In order to calculate the exponentg, we considered the
scaling of the interface growth velocity. The difference b
tween the growth velocityv` in an infinitely large substrate
and the velocityv(L) in the steady state of a finite lattic
~thick films! scales as@26,27#

Dv~L ![v`2v~L !;lL2a i, ~7!

with a i51 in d51 @26#. Defining

bv~L ![Dv~L !3L, ~8!

we expect that, asL→`,

bv~L !→Bv5Bl, ~9!

whereB is a constant.
In the discrete model,l varies withp, consequentlybv is

a function ofL andp which has a finite limiting valueBv(p)
as L→`. For very largeL, Eqs. ~6! and ~9! show thatBv
scales withp with exponentg.

Simulations of the model were performed in lattices
lengths fromL516 to L54096 until the saturation regime
and in lattices withL5216565536 during the growth regim
~linear and nonlinear!, for several values of the probabilityp
betweenp50.15 andp50.5. The results presented in th
paper are averages typically over 105 realizations for the
smallest lattices (L<256), 104 realizations for 256<L
<4096, and 102 realizations forL565536. The growth ve-
locities were calculated from numerical derivatives of t
average heights of the deposits, with accuracies from 5
decimal places, in lattices of lengthsL<128 (L<512 for p
50.15). We considered the data forL565536 as represen
tative of an infinite lattice in the growth regime~some simu-
lations in L5131072 supported this assumption!, and also
obtainedv` with high accuracy. These data provided es
mates ofbv(p,L) with accuracy from 0.5% to 5%. For large
lengths, poorer results were obtained due to the m
smaller number of realizations.

In Fig. 3 we showbv(p,L) versus 1/L for the three small-
est values ofp considered in this work. The variable 1/L in
the abscissa was the best choice to represent finite-size
rections inbv asL→`, and is related to higher order term
(1/L2) in Eq. ~7!. Such scaling corrections have been pre
ously observed in the analysis of smallL data for BD and for

FIG. 2. For small values ofp and sufficiently largeL, the inter-
face widthW(t,L,p) presents three regimes: a linear~EW! growth
regime at early times (t!tc), a nonlinear~KPZ! growth regime for
tc!t!t, and the saturation regime fort@t.
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the restricted solid-on-solid model by Krug and Meakin@26#.
The corrections were considered in the extrapolation of
data in Fig. 3, which provided estimates ofBv(p) for several
values ofp ~intercepts with the vertical axis in Fig. 3!.

Crossover effects may be crucial in the extrapolation p
cedure discussed above, and may severely affect the
mates ofBv for smallp. For 0.25<p<0.5, four values ofbv
(16<L<128) were well fitted by straight lines in th
bv(p,L)31/L plots ~these results were not shown in Fig.
except forp50.25). Forp50.2, the data for 32<L<256
confirm the presence of the 1/L correction and was also use
to estimateBv ~the estimate forL516 deviates from this
trend!. On the other hand, forp50.15, the result forL
5256 showed a crossover inbv , which suggested calcula
tions for L5512. Figure 3 shows thatbv(0.15,L) slowly
increases for 16<L<128, but decreases for 128<L<512.
Consequently, the extrapolation considered only the th
last points~see Fig. 3! and gaveBv'0.057. However, if the
extrapolation toL→` was performed only with results fo
L<128, then a 7% larger value ofBv would be obtained.
Smaller values ofp were not studied here because su
crossover would appear for much largerL and, consequently
the extrapolations based on small systems’ data would
vide unreliable estimates ofbv(p,`).

In Fig. 4 we show ln@Bv(p)# versus lnp using the extrapo-
lated values ofBv , as discussed above. The linear fit in Fi
4 givesBv;p2.1. Considering the error bars inBv , we ob-
tain an exponentg52.160.2 @Eq. ~6!#.

The large value of the exponentg explains the crossove
effect discussed above. Sincel decreases rapidly withp, the
coefficient of the leading term inDv @Eq. ~7!# is small com-

FIG. 3. bv(p,L)[Dv3L versus 1/L for p50.25 ~squares!, p
50.2 ~triangles!, andp50.15~crosses!. Solid lines are least square
fits of the data for largerL.

FIG. 4. Log-log plot ofBv(p) as a function ofp. The linear fit
gives an exponentg52.160.2.
4-3
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A. CHAME AND F. D. A. AARÃO REIS PHYSICAL REVIEW E66, 051104 ~2002!
pared to higher order corrections (1/L2, 1/L3, etc.! for small
p. Thus, very large values ofL are needed to provide reliabl
extrapolations with a single correction term, which preven
us to use values ofp,0.15 in our study.

III. INTERFACE WIDTH AT THE NONLINEAR
GROWTH REGIME

In the nonlinear growth regime (tc!t!l21Lz) for suffi-
ciently large substrates ind51, the interface width does no
depend onL ~weak finite-size effects!. Then the scaling func-
tion of Eq. ~5! behaves as

g~x!'Cxb, b51/3, ~10!

with constantC, so thatW does not depend onL, except for
vanishing corrections to scaling. Consequently,
l-dependent scaling ofW in this regime is

W'Clbtb. ~11!

In this section, we will verify thisl dependence through
careful analysis of simulations’ data of our discrete mode

However, first we will show that Eq.~11! givesf54 @Eq.
~4!# in a simple way, as follows. The crossover EW-KPZ~at
t;tc) occurs when the scaling relation~11! matches the EW
scaling

W~ t,L !'C8tb0, ~12!

with C8 constant. Thus

tc
b0;lbtc

b , ~13!

then we obtainf5@b/(b2b0)#5@z0 /(z02z)#54.
We conclude that the numerical test of Eq.~11!, in par-

ticular, of the dependence on the parameterl, may be used
to test the proposalf54. The first step is to extract th
amplitude oftb scaling in Eq.~11!, which motivates the defi-
nition of the amplitudea(p,t) as

a~p,t ![W~L→`,t !/t1/3. ~14!

In Fig. 5~a! we showa(p,t) versus 1/t1/3 for several values
of p, using the data forL5216565536. Different variables

FIG. 5. ~a! Interface width amplitude in the nonlinear regim
a(p,t)[W(L→`,t)/t1/3 as a function of 1/t1/3 for p50.4, p
50.3, p50.25, p50.2, andp50.15 ~from top to bottom!; ~b! Ef-
fective exponentdp versusp2, with a linear fit that gives the expo
nentd'0.7 asp→0.
05110
d
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in the form 1/tx(x.0) were tested in the abscissa, but t
variable 1/t1/3 of Fig. 5~a! provided the best linear fits fo
most values ofp. The fact that in Fig. 5~a! a(p,t) is still
decreasing for larget indicates the presence of a consta
~independent oft) correction to the leading behavior in Eq
~11!. It proves again the relevance of accounting for scal
corrections in this problem, although we are not able to j
tify these corrections on theoretical grounds.

As t→`, a(p,t) converges to a finite limiting value

A~p![a~p,`!. ~15!

A(p) is the complete amplitude oftb scaling of the interface
width in the nonlinear growth regime@Eq. ~11!#. Our esti-
mates ofA(p) were obtained from linear extrapolations
a(p,t)31/t1/3 plots tot→` @intercepts with the vertical axis
in Fig. 5~a!#.

From Eq. ~11!, it is expected that the amplitudeA(p)
scales aslb. From the connection relation~6!, it is expected
that

A~p!;pd, ~16!

with

d5gb. ~17!

Then, the test of Eq.~11! reduces to the test of Eq.~17! for
the amplitude exponentd.

In order to calculate the exponentd in the relation~16!,
our first step was to plot ln@A(p)# versus lnp, but we noticed
that it showed decreasing slopes asp decreased. We analyze
the evolution of the slopes of ln@A(p)#3ln p plots by calcu-
lating the following effective exponents for consecutive v
uesp5p8 andp5p9:

dp5
ln@a~p8,`!/a~p9,`!#

ln~p8/p9!
, p5Ap8p9, ~18!

so that, asp→0 (l→0), we expect thatdp→d.
In Fig. 5~b! we showdp versusp2, which gives a reason

able linear fit and indicates thatd50.760.2. Again the vari-
ablep2 in the abscissa is the one that provides the best lin
fit of the central estimates ofdp , chosen among other vari
ables in the formpy(y.0). In Fig. 5~b!, the effective expo-
nents systematically decrease asp decreases, which reflect
our previous observation of decreasing slopes in ln@A(p)#
3ln p plots.

Our estimatesd50.760.2 andg52.160.2 ~Sec. II! are
consistent with relation~17! with b51/3. Even considering
that the error bars are large, it is relevant to notice that
central estimates confirm that relation exactly, which giv
additional support to our analysis.

IV. INTERFACE WIDTH NEAR AND AT THE STEADY
STATE REGIME

Our numerical results in the steady state regime prov
additional support for the scaling picture proposed for
problem.
4-4
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CROSSOVER EFFECTS IN A DISCRETE DEPOSITION . . . PHYSICAL REVIEW E 66, 051104 ~2002!
From Eq.~5!, we expect that the crossover from the no
linear to the steady state regime takes place at a characte
time t that scales as

t;l21Lz, ~19!

with z53/2 in d51. In this section, our main purpose is
test thel dependence of this characteristic time in our d
crete model.

The saturation timet is usually estimated using som
arbitrary recipe. Here, instead of estimating the satura
time t ~which may be defined from the time dependence
the interface width as it converges to the saturation valu!,
we calculated a characteristic timet0 which is proportional
to t, according to a recently proposed method@28#. That
method provided accurate estimates of dynamic expon
for several growth models ind51 andd52, including the
Family and the BD models.

First, the saturation widthWs is estimated, for fixedp and
L. Then we definet0 through

W~t0!5kWs , ~20!

with fixed k(k&1) @28#. Using the Family-Vicsek relation
W(L,t)5La f (tL2z) and considering thatWs;La, we con-
clude thatt0;Lz, i.e., t0 is proportional to the saturatio
time t. For the particular case of a KPZ system, Eq.~5!
gives

t0;l21L3/2. ~21!

Extending the procedure of previous work@28#, we con-
sideredk5121/e50.6321••• in Eq. ~20! to estimatet0.
This value ofk gavet0't for BD, wheret was estimated
from the decay ofWs2W @28#. In the present model, fo
fixed p, we calculated the ratiost0 /L3/2 for several lengthsL
and obtained the asymptotic amplitude

D~p!5
t0

L3/2
, L→`. ~22!

The extrapolation procedure follows the same lines of
calculation ofA(p) from a(p,t) in Sec. III. However, only
results forp>0.2 could be obtained using data for lattic
sizesL<4096, since the saturation for smaller values ofp is
typically of EW type (t;L2) in this range ofL.

From Eqs.~22! and ~21!, we expect thatD(p);l21.
Consequently, it must scale withp as

D~p!;p2g. ~23!

In Fig. 6 we show lnD(p) versus lnp, with a linear fit that
gives D(p);p22.1. This result is consistent with the inde
pendent estimate ofg from Eq. ~6! ~Sec. II!.

We also analyzed the scaling of the saturation widthWs .
For lattice sizes L<1024, we obtainedWs;La with
a51/2 and weak corrections to scaling. Using the data
L51024, we defined

DWs[Ws~p!2Ws~0! ~24!
05110
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as the difference between the saturation width for a giv
probability p and the saturation width for the Family mod
(p50).

In Fig. 7 we show lnDWs versus lnp. The linear fit sug-
gestsDWs;p3/2, thus we obtain the complete form for th
saturation width as

Ws'~C11C2p3/2!La, ~25!

with a51/2, C1 and C2 constants. The amplitude ofWs
scaling is (D/24n)1/2 @27#, i.e., the heights’ fluctuations de
pend only on the parametersn and D of the KPZ equation
~1!, but not on the nonlinearity parameterl. Thus we con-
clude that the dependence onp in Eq. ~25! is related to the
dependence onp of the surface tension parametern: whenp
decreases, the amplitude in Eq.~25! decreases, then the pa
rametern increases. Indeed, this term is physically expec
to increase in the crossover from BD~low n) to the Family
model ~high n).

V. SUMMARY AND CONCLUSIONS

We studied a competitive growth model in (111) dimen-
sions involving two dynamics: ballistic deposition with pro
ability p and random deposition with surface relaxati
~Family model! with probability 12p. This model is a dis-
crete realization of the continuum KPZ equation with an a
justable nonlinear couplingl related top. At the critical
probability pc50, the process belongs to the EW univers
ity class, while any finite value ofp drives the system to KPZ
class.

FIG. 6. Log-log plot of the amplitudeD(p) (t0 /L3/2 as L
→`) as a function ofp. The linear fit givesD(p);p2v with v
'2.1.

FIG. 7. Log-log plot ofDWs[Ws(p)2Ws(0) as a function of
p, using data forL51024. The linear fit suggestsDWs;p3/2.
4-5
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A. CHAME AND F. D. A. AARÃO REIS PHYSICAL REVIEW E66, 051104 ~2002!
We established the connection between the parametep
andl asl;p2.1 and showed thatW;p0.7t1/3 in the growth
regime. This indicates that the discrete model presents a
slow crossover from EW to KPZ scaling at small values ofp,
since the crossover time istc;l24;p28.4. This slow cross-
over explains the discrepancies in the effective exponenb
measured in that regime in previous works@19#.

We also obtained the saturation timet;p22.1L3/2. The
conditiont@tc is necessary to observe the crossover to K
scaling, while the opposite condition leads to EW saturat
without an intermediate KPZ growth of the interface widt
A critical system sizejc separates systems that present E
d

E

05110
ry

Z
n
.

or KPZ saturation, andjc can be estimated from the cond
tion t;tc , which givesjc;l22;p24.2. This large expo-
nent proves that simulations in very large system sizes
necessary in order to observe all features of KPZ scaling
small p.

Our results are consistent with the scaling theories for
weak coupling regime of the KPZ equation proposed by s
eral authors and refine previous numerical analysis. Then
expect that the methods presented here may be helpfu
analyze other growth models with slow crossovers to K
scaling, in which scaling theories cannot be easily dev
oped.
ev.

os,
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